Adaptation to simulated microgravity in Streptococcus mutans

  • McPhee, J. C. & Charles, J. B. Human well being and efficiency dangers of area exploration missions: proof reviewed by the NASA human analysis program (US NASA, Houston, TX, 2009).

  • Thirsk, R., Kuipers, A., Mukai, C. & Williams, D. The space-flight atmosphere: the Worldwide House Station and past. CMAJ 180, 1216–1220 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pierson, D. L. Microbial contamination of spacecraft. Gravit. House Res. 14 (2007).

  • Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R. & Pierson, D. L. Microbial responses to microgravity and different low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Castro, V. A., Thrasher, A. N., Healy, M., Ott, C. M. & Pierson, D. L. Microbial Characterization through the Early Habitation of the Worldwide House Station. Microb. Ecol. 47, 119–126 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mermel, L. A. An infection prevention and management throughout extended human area journey. Clin. Infect. Dis. 56, 123–130 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Crucian, B. et al. A case of persistent pores and skin rash and rhinitis with immune system dysregulation onboard the Worldwide House Station. J. Allergy Clin. Immunol. Pr. 4, 759–762.e8 (2016).

    Article 

    Google Scholar
     

  • Crucian, B. et al. Incidence of scientific signs throughout long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Novikova, N. et al. Survey of environmental biocontamination on board the Worldwide House Station. Res. Microbiol. 157, 5–12 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Cho, I. & Blaser, M. J. The human microbiome: on the interface of well being and illness. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coyte, Ok. Z., Schluter, J. & Foster, Ok. R. The ecology of the microbiome: networks, competitors, and stability. Science 350, 663–666 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devaraj, S., Hemarajata, P. & Versalovic, J. The human intestine microbiome and physique metabolism: implications for weight problems and diabetes. Clin. Chem. 59, 617–628 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huttenhower, C. et al. Construction, perform and variety of the wholesome human microbiome. Nature 486, 207 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Tilg, H. & Kaser, A. Intestine microbiome, weight problems, and metabolic dysfunction. J. Clin. Make investments. 121, 2126–2132 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehta, S. Ok. et al. Latent virus reactivation in astronauts on the worldwide area station. NPJ Microgravity 3, 11 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehta, S. Ok. et al. Localization of VZV in saliva of zoster sufferers. J. Med. Virol. 89, 1686–1689 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pierson, D. L., Stowe, R. P. S., Phillips, T. M., Lugg, D. J. & Mehta, S. Ok. Epstein-Barr virus shedding by astronauts throughout area flight. Mind Behav. Immun. 19, 235–242 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gueguinou, N. et al. Might spaceflight-associated immune system weakening preclude the growth of human presence past Earth’s orbit? J. Leukoc. Biol. 86, 1027–1038 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guéguinou, N. et al. Stress response and humoral immune system alterations associated to power hypergravity in mice. Psychoneuroendocrinology 37, 137–147 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Guéguinou, N. et al. Modulation of Iberian Ribbed Newt Complement Element C3 by Stressors Just like these Encountered throughout a Keep Onboard the Worldwide House Station. Int. J. Mol. 20, 1579 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Crucian, B. E. et al. Immune System Dysregulation Throughout Spaceflight: Potential Countermeasures for Deep House Exploration Missions. Entrance. Immunol. 9, 1437 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nickerson, C. A. et al. Microgravity as a novel environmental sign affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 3147–3152 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilson, J. W. et al. House flight alters bacterial gene expression and virulence and divulges a task for world regulator Hfq. Proc. Natl Acad. Sci. U.S.A. 104, 16299–16304 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Castro-Wallace, S., Stahl, S., Voorhies, A., Lorenzi, H. & Douglas, G. L. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity. Acta Astronaut 139, 463–468 (2017).

    Article 

    Google Scholar
     

  • Lynch, S. V., Brodie, E. L. & Matin, A. Position and regulation of sigma S normally resistance conferred by low-shear simulated microgravity in Escherichia coli. J. Bacteriol. 186, 8207–8212 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brown, R. B., Klaus, D. & Todd, P. Results of area flight, clinorotation, and centrifugation on the substrate utilization effectivity of E. coli. Microgravity Sci. Technol. 13, 24–29 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • McLean, R. J., Cassanto, J. M., Barnes, M. B. & Koo, J. Bacterial biofilm formation beneath microgravity situations. FEMS Microbiol. Lett. 195, 115–119 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A. & Ott, C. M. Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear tradition of Staphylococcus aureus. Appl. Environ. Microbiol. 77, 6368–6378 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mauclaire, L. & Egli, M. Impact of simulated microgravity on development and manufacturing of exopolymeric substances of Micrococcus luteus area and earth isolates. FEMS Immunol. Med. Microbiol. 59, 350–356 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fang, A., Pierson, D. L., Koenig, D. W., Mishra, S. Ok. & Demain, A. Impact of simulated microgravity and shear stress on microcin B17 manufacturing by Escherichia coli and on its excretion into the medium. Appl. Environ. Microbiol. 63, 4090–4092 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gilbert, R. et al. Spaceflight and simulated microgravity situations improve virulence of Serratia marcescens within the Drosophila melanogaster an infection mannequin. NPJ Microgravity 6, 1–9 (2020).

    Article 

    Google Scholar
     

  • Crabbé, A. et al. Use of the rotating wall vessel expertise to review the impact of shear stress on development behaviour of Pseudomonas aeruginosa PA01. Environ. Microbiol. 10, 2098–2110 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Allen, C. A., Niesel, D. W. & Torres, A. G. The consequences of low‐shear stress on Adherent‐invasive Escherichia coli. Environ. Microbiol 10, 1512–1525 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barratt M. R. & Pool, S. L. Ideas of Scientific Medication for House Flight. (Springer Science & Enterprise Media, New York, 2008).

  • Rai, B. & Kaur, J. The historical past and significance of aeronautic dentistry. J. Oral. Sci. 53, 143–146 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Watkins, S., Barr, Y. & Kerstman, E. The area drugs exploration medical situation listing. In 18th IAA People in House Symposium (No. JSC-CN-23330) (2011).

  • Menon, A., B. Dental Working Group Assembly. Abstract Report (NASA/TM-2012-217367). NASA CASI Hanover, MD (2012).

  • Marsh, P. D. Microbiologic features of dental plaque and dental caries. Dent. Clin. N. Am. 43, 599–614 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schachtele, C. F., Nobbs, A. H., Zhang, Y., Costalonga, M. & Herzberg, M. C. Oral streptococci: commensals and opportunistic pathogens. In Molecular biology of streptococci (pp. 411-462) (Horizon Scientific Press, Norfolk, VA. 2007).

  • Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Human Microbiome Mission Consortium. Construction, perform and variety of the wholesome human microbiome. Nature 486, 207–214 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Evaldson, G., Heimdahl, A., Kager, L. & Nord, C. E. The conventional human anaerobic microflora. Scand. J. Infect. Dis. 35, 9–15 (1982).

    CAS 

    Google Scholar
     

  • Kolenbrander, P. E. et al. Bacterial interactions and successions throughout plaque improvement. Periodontol 42, 47–79 (2006).

    Article 

    Google Scholar
     

  • Kreth, J., Zhang, Y. & Herzberg, M. C. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190, 4632–4640 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Palmer, R. J. Jr, Diaz, P. I. & Kolenbrander, P. E. Fast succession throughout the Veillonella inhabitants of a creating human oral biofilm in situ. J. Bacteriol. 188, 4117–4124 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hooper, D. R., Littman, A. J. & Macpherson, L. V. Interactions between the microbiota and the immune system. Science 336, 1268–1278 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shroff, Ok. E., Meslin, Ok. & Cebra, J. J. Commensal enteric micro organism engender a self- limiting humoral mucosal immune response whereas completely colonizing the intestine. Infect. Immun. 63, 3904–3913 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takahashi, B. & Nyvad, N. The position of micro organism within the caries course of: ecological views. J. Dent. Res. 90, 294–303 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gross, E. L. et al. Bacterial 16S sequence evaluation of extreme caries in younger everlasting tooth. J. Clin. Microbiol. 48, 4121–4128 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jaykus, L. A., Wang, H. H. & Schlesinge, L. S. Meals-borne microbes: shaping the host ecosystem. (ASM Press, Washington, 2009).

  • Tamura, S. et al. Inhibiting results of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral. Microbiol. Immunol. 24, 152–161 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krzysciak, W., Jurczak, A., Koscielniak, D., Bystrowska, B. & Skalniak, A. The virulence of Streptococcus mutans and the power to kind biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 33, 499–515 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Orsini, S. S., Lewis, A. M. & Rice, Ok. C. Investigation of simulated microgravity results on Streptococcus mutans physiology and world gene expression. NPJ Microgravity 3, 4 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, X. et al. Results of simulated microgravity on Streptococcus mutans physiology and biofilm construction. FEMS Microbiol. Lett. 359, 94–101 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graves, J. L. Antimicrobial Nanomaterials: Ideas and Software. (Elsevier, Amsterdam, 2021).

  • Conrad, T. M. et al. Complete-genome resequencing of Escherichia coli Ok-12 MG1655 present process short-term laboratory evolution in lactate minimal media reveals versatile collection of adaptive mutations. Genome Biol. 10, R118 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Perron, G. G., Zasloff, M. & Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci. 273, 251–256 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Ketola, T. & Hiltunen, T. Fast evolutionary adaptation to elevated salt concentrations in pathogenic freshwater micro organism Serratia marcescens. Ecol. Evol. 4, 3901–3908 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tajkarimi, M. et al. Choice for Ionic-silver Confers Silver Nanoparticle Resistance in Escherichia coli. JSM Nanotechnol. Nanomed. 5, 1047 (2017).


    Google Scholar
     

  • Randall, C. P., Gupta, A., Jackson, N., Busse, D. & O’Neill, A. J. Silver resistance in Gram-negative micro organism: a dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 70, 1037–1046 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graves, J. L. Jr. et al. Fast evolution of silver nanoparticle resistance in Escherichia coli. Entrance. Genet. 6, 42 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tirumalai, M. R. et al. The variation of Escherichia coli cells grown in simulated microgravity for an prolonged interval is each phenotypic and genomic. NPJ Microgravity 3, 15 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tirumalai, M. R. et al. Analysis of acquired antibiotic resistance in Escherichia coli uncovered to long-term low-shear modeled microgravity and background antibiotic publicity. Mbio 10, 2637 (2019).


    Google Scholar
     

  • Herranz, R. et al. Floor-based services for simulation of microgravity: organism-specific suggestions for his or her use, and beneficial terminology. Astrobiology 13, 1–17 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenzweig, J. A. et al. Spaceflight and modeled microgravity results on microbial development and virulence. Appl. Microbiol. Biotechnol. 85, 885–891 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Checinska, A. et al. Microbiomes of the mud particles collected from the Worldwide House Station and Spacecraft Meeting Services. Microbiome 3, 50 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crucian, C. et al. Alterations in adaptive immunity persist throughout long-duration spaceflight. NPJ Microgravity 1, 15013 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Demain, A. L. Secondary metabolism in simulated microgravity. Chem. Rec. 1, 333–346 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynch, S. V., Mukundakrishnan, Ok., Benoit, M. R., Ayyaswamy, P. S. & Matin, A. Escherichia coli biofilms fashioned beneath low-shear modeled microgravity in a ground-based system. Appl. Environ. Microbiol. 72, 7701–7710 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pyle, B. H., Broadaway, S. C. and McFeters, G. A. Burkholderia cepacia Biofilm Development and Disinfection in Microgravity. SAE Technical Paper No. 2001-01-2128 (2001).

  • Shao, D. et al. Simulated microgravity impacts some organic traits of Lactobacillus acidophilus. Appl. Microbiol. Biotechnol. 101, 3439–3449 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tucker, D. L. et al. Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity atmosphere. BMC Microbiol 7, 15 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vukanti, R., Mintz, E. & Leff, L. Modifications in Gene Expression of E. coli beneath Circumstances of Modeled Diminished Gravity. Microgravity Sci. Technol. 20, 41–57 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Wen, Z. T. et al. Streptococcus mutans Shows Altered Stress Responses Whereas Enhancing Biofilm Formation by Lactobacillus casei in Combined-Species Consortium. Entrance Cell Infect. Microbiol 7, 524 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing knowledge utilizing breseq. In Engineering and analyzing multicellular techniques (pp. 165-188). (Humana Press, New York, NY. 2014).

  • Ajdić, D. et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl Acad. Sci. U.S.A. 99, 14434–14439 (2002).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pightling, A. W., Petronella, N. & Pagotto, F. Alternative of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence knowledge significantly influences charges of error in SNP analyses. PloS one 9, e104579 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Banas, J. Virulence Properties of Streptococcus mutans. Entrance. Biosci. 9, 1267–1277 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fisher, R. A. The genetical concept of pure choice (Oxford Univ. Press, Oxford, 1930).

  • Vassilieva, L. L., Hook, A. M. & Lynch, M. The health results of spontaneous mutations in Caenorhabditis elegans. Evolution 54, 1234–1246 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denver, D. R., Morris, Ok., Lynch, M. & Thomas, W. Ok. Excessive mutation price and predominance of insertions within the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maharjan, R. P. et al. Mutation accumulation and health in mutator subpopulations of Escherichia coli. Biol 9, 20120961 (2013).


    Google Scholar
     

  • Rakette, S., Donat, S., Ohlsen, Ok. & Stehle, T. Structural evaluation of Staphylococcus aureus serine/threonine kinase PknB. PLoS One 7, e39136 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abshire, C. F. et al. Publicity of Mycobacterium marinum to low-shear modeled microgravity: impact on development, the transcriptome and survival beneath stress. NPJ Microgravity 2, 1–14 (2016).

    Article 

    Google Scholar
     

  • Alves, L. A. et al. The 2‐element system VicRK regulates capabilities related to Streptococcus mutans resistance to enhance immunity. Mol. Oral. Microbiol 32, 419–431 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abril, A. G. et al. Proteomic Characterization of Antibiotic Resistance, and Manufacturing of Antimicrobial and Virulence Components in Streptococcus Species Related to Bovine Mastitis. Might Enzybiotics Characterize Novel Therapeutic Brokers In opposition to These Pathogens? Antibiotics 9, 302 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu, J. et al. Identification of Streptococcus mutans genes concerned in fluoride resistance by screening of a transposon mutant library. Mol. Oral. Microbiol 35, 260–270 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawada-Matsuo, M., Oogai, Y. & Komatsuzawa, H. Sugar allocation to metabolic pathways is tightly regulated and impacts the virulence of Streptococcus mutans. Genes 8, 11 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Z., Vandonselaar, M., Hengstenberg, W., Quail, J. W. & Delbaere, L. T. J. The 1.6 Å construction of histidine-containing phosphotransfer protein HPr from Streptococcus faecalis. J. Mol. Biol. 236, 1341–1355 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, Y., Reizer, J., Saier, M. H. Jr, Fairbrother, W. J. & Wright, P. E. Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. Biochemistry 32, 32–37 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Napper, S. et al. Mutation of serine-46 to aspartate within the histidine-containing protein of Escherichia coli mimics the inactivation by phosphorylation of serine-46 in HPrs from gram-positive micro organism. Biochemistry 35, 11260–11267 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bai, P. et al. Decreased metabolism and elevated tolerance to excessive environments in Staphylococcus warneri throughout lengthy‐time period spaceflight. MicrobiologyOpen 8, e917 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight situations contain large-scale modifications in metabolic pathways. Adv. House Res. 53, 1108–1117 (2014).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Elevated development price and amikacin resistance of Salmonella enteritidis after one‐month spaceflight on China’s Shenzhou‐11 spacecraft. MicrobiologyOpen 8, e00833 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Chen, Y., Wang, L., Yang, R. & Han, Y. Analysis of pathogenesis and biofilm formation capacity of Yersinia pestis after 40-day publicity to simulated microgravity. Int. J. Astrobiology (2021).

  • Wilson, J. W. et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PloS One 3, e3923 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bitoun, J. P., Nguyen, A. H., Fan, Y., Burne, R. A. & Wen, Z. T. Transcriptional repressor Rex is concerned in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. FEMS Microbiol. Lett. 320, 110–117 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bitoun, J. P., Liao, S., Yao, X., Xie, G. G. & Wen, Z. T. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans. PLoS One 7, e44766 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, Y. et al. Distinct structural options of Rex-family repressors to sense redox ranges in anaerobes and aerobes. J. Struct. Biol. 188, 195–204 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A. & Ott, C. M. Low Fluid Shear Tradition of Staphylococcus aureus Induces Attachment-Unbiased Biofilm Formation and Represses hfq Expression. Appl. Environ. Microbiol. (2011).

  • Senatore, G., Mastroleo, F., Leys, N. & Mauriello, G. Development of Lactobacillus reuteri DSM17938 Beneath Two Simulated Microgravity Programs: Modifications in Reuterin Manufacturing, Gastrointestinal Passage Resistance, and Stress Genes Expression Response. Astrobiology 20, 1–14 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hekmat, A., Hajebrahimi, Z. & Motamedzade, A. Structural modifications of human serum albumin (HSA) in simulated microgravity. Protein Pept. Lett. 24, 1030–1039 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wiser, M. J., Ribeck, N. & Lenski, R. E. Lengthy-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lawal, A. et al. The consequences of modeled microgravity on development kinetics, antibiotic susceptibility, chilly development, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental pressure. Astrobiology 13, 821–832 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosado, H., Doyle, M., Hinds, J. & Taylor, P. W. Low-shear modeled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut 66, 408–413 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Garschagen, L. S., Mancinelli, R. L. & Moeller, R. Introducing Vibrio natriegens as a microbial mannequin organism for microgravity analysis. Astrobiology 19, 1211–1220 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalpana, D., Cha, H., Park, M. & Lee, Y. Development, morphology, cross stress resistance and antibiotic susceptibility of Ok. pneumoniae beneath simulated microgravity. J. Environ. Sci. Int. 21, 267–276 (2012).

    Article 

    Google Scholar
     

  • Supply hyperlink

    admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    en_USEnglish